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8 as a major product strongly supports the presumption that 
intersystem crossing of 12 to 11 occurs.19 It would thus appear 
that, along with rearrangement, insertion results from reaction 
of 11. Without further information, however, it can not be 
concluded that conversion into 4 and 5 is the exclusive province 
of singlet ll .1 9 

Direct photolysis and singlet photosensitization of 1 and 2 
occur with absorption of ~82-90 kcal/mol of energy. Elec­
tronically excited singlets 1-2* and/or possibly excited 15* 
are thus highly energetic and their conversions into 4* and 5* 
are spin allowed. Rearrangement to 5* is now extensive and 
the product does not undergo alteration as occurs when derived 
from vibrationally excited intermediates in the gas phase.7e 

Finally, triplet photosensitization of diazo compounds and 
diazirines as in the present systems may give advantage over 
thermolysis and direct photolysis for specific synthesis. 
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Total Synthesis of Tryptoquivaline G 

Sir: 

A strain of the fungus Aspergillus clavatus collected from 
mold damaged rice produced a group of toxic, tremor inducing 
metabolites with novel structures. Tryptoquivaline (1) was 
found to be the major metabolite, and a transformation product 
containing a fj-lactone ring was used to determine its structure 
and relative configuration by X-ray crystallography.1 Com­
parison of circular dichroism and 1H NMR spectra with those 
of nortryptoquivaline2 suggested structure 2 for this companion 
metabolite. Tryptoquivaline G (3) is a representative of a more 
recently discovered group of mycotoxins produced by Asper­
gillus fumigatus.^'5 It, as well as tryptoquivaline L (17), an 
artefact, lacks the isobutyl side chain. The total synthesis of 
tryptoquivaline G (3) outlined here confirms the proposed 

1 R1=CH1 R,= J^-H 
CH,COO*^ y0 

2 R1= H R2= JL--H 

CH1COO y 

3 R 1 = CHj R2= H 
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structure and establishes both relative and absolute configu­
ration. 

The synthesis relied heavily on a new method for the con­
version of iV-acyltryptophans to spirolactones and the steric 
course of the reaction was explored with a model compound.6 

Oxidation of 7V-phthalimido-L-tryptophan with 2 equiv of 
trichloromethanesulfonyl chloride-dimethyl sulfoxide7 

(CH2CI2, —20 0C) gave a 65% yield of two diastereomeric 
lactones (4 and 5) in a ratio of 7:3. The major isomer 4, mp 

4 5 

275-277 °C, [a]25D -133° (c 1.7, acetone), was recovered 
unchanged after treatment with sodium hydride or imidazole 
in dimethylformamide. The minor isomer 5, mp 279-281 0C, 
[a]24D —206° (c 1.4, acetone), under the same conditions was 
converted into the enantiomer of 4, [a]25D+132° (c 1.4, ac­
etone), demonstrating different configurations at the spiro 
atom in the two diastereomers. Since the epimerization of 
tryptoquivaline G (3) to tryptoquivaline L (17) is accompanied 
by a large negative shift in optical rotation, the absolute con­
figurations at C3 and C19 should be opposite those of the model 
compound 5. The major, and thermodynamically more stable, 
epimer formed in the oxidative lactonization thus has the 
correct stereochemistry at the spiro center. 

Intermediate 6 was prepared by condensation of !.-trypto­
phan with o-nitrobenzoyl chloride to give the amide, mp 

9 R = £ - H 

212-214 °C, esterification with phenyldiazomethane to the 
benzyl ester, mp 148-150 0C, and reduction with iron (HCl, 
ethanol, reflux). The formamide, mp 140-142 0C (HCOOH, 
benzene, reflux), on dehydration (TsOH, xylene, reflux) gave 
a quinazolinone which was hydrogenolyzed to the acid 7, mp 
238-240 0C, over palladium on carbon in ethanol (overall yield 
from L-tryptophan was 50%). Oxidation of 7 with 2 equiv of 
methanesulfonic anhydride-dimethyl sulfoxide (CH2CI2, —20 
0C, 5 h) gave 56-66% spirolactone 8, mp 321-322 °C dec, 
[a]25

D -377 ° (c 0.07, CH3CN), in addition to <10% epimer 
differing in configuration at the spiro center. To confirm the 
stereochemistry, 8 was exposed to potassium hydride in 
THF-DMF (20 0C, 3 min), and the resulting enolate was 
protonated with 1% HCl in THF (-70 0C). Product 9 (40%), 
mp 315-318 0C dec, [a]25

D +320° (c 0.02, CH3CN), was the 
enantiomer of the minor product formed in the oxidative lac­
tonization. Owing to the exceptional lability of 9 to base, the 

synthesis was continued with 8. Derivative 10, mp 82-83 0C, 
was prepared from a-methylalanine and p-methoxybenzyl-
8-quinolyl carbonate8 with the aid of triethylamine, followed 
by esterification with p-nitrophenol and dicyclohexylcarbo-
diimide. Lactone 8 was then silylated with bis(trimethylsi-
lyl)acetamide9 and the crude product condensed with 10 in 
DMF containing tetramethylammonium chloride. Treatment 
of the crude imide with triethylamine gave the highly insoluble 
cyclol 11, mp 243-245 °C, in 81% overall yield. Transforma­

tion to the aminals 15 and 16 could be accomplished by con­
secutive treatment of 11 with sodium cyanoborohydride, DDQ, 
and trifluoroacetic acid, but the two epimers were obtained in 
a ratio of 1:1. In a more stereoselective sequence, the p-
methoxybenzyloxycarbonyl group was first removed by 
treatment of a suspension of the cyclol 11 in ethyl acetate with 
trifluoroacetic acid in the presence of anisole (0 0C, 30 min).10 

The deprotected cyclol 12, mp 268-270 0C (76%), was reduced 
with sodium cyanoborohydride (THF, H2O, HCl, pH ~ 3 , 20 
°C, 1 h) to give a 4:1 mixture of dihydroquinazolinones 13, mp 
248-250 0C, and 14, mp 243-245 0C. Reoxidation to the 
corresponding quinazolinones 15, mp 250-251 °C (acetone), 
[a]25D -260° (c 0.01, acetone), and 16, mp 172-174 0C 
(AcOEt-hexane), [a]2 5

D -67° (c 0.12, CHCl3), was ac­
complished in 89% and 80% yield, respectively, with DDQ in 
chloroform. 1H NMR spectra of the two isomers were used to 
establish the configurations at C2, and the major isomer on 
oxidation with m-chloroperbenzoic acid2 gave tryptoquivaline 
L (17, 85%), mp 275-277 0C dec, [a]25

D -230° (c 0.02, ac­
etone), with spectral properties in accord with those pub­
lished.4^ Contrathermodynamic epimerization, as in the 
conversion of 8 into 9, gave tryptoquivaline G identical 
(melting point, [a]o, IR, 1H NMR and chromatographic 
behavior) with material isolated from A. fumigatus.u The 
tryptoquivalines are thus derived from D-tryptophan. 

The configuration of nortryptoquivaline (2) was established 
by X-ray analysis12 and reduction of this metabolite with zinc 
followed by hydrolysis which yielded L-alanine.3'5 The absolute 
configuration of the metabolite (2) thus agrees with that of 
tryptoquivaline G (3) determined by synthesis. 
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Figure 1. Diastereomeric BP 7,8-diol 9,10-epoxides.3 The enantiomers 
of each diastereomer shown are those found bound to nucleic acid when 
BP is applied to mouse skin.4 
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General Acid Catalysis in the Hydrolysis of 
Benzo[a]pyrene 7,8-Diol 9,10-Epoxides 

Sir: 

The most studied of the carcinogenic hydrocarbons is the 
ubiquitous environmental contaminant benzo[a]pyrene (BP). 
Studies from several laboratories' have recently allowed the 
identification of the metabolite (+)-7/3,8o!-dihydroxy-
9a,10a-epoxy-7,8,9,10-tetrahydro BP ((+)-2, Figure 1) as an 
ultimate carcinogen of BP in newborn mice.2 Two diastereo­
meric 7,8-diol 9,10-epoxides of BP are metabolically possible, 
each capable of existing in enantiomeric forms. Although 
(±) - l is >30-fold more hydrolytically reactive in the physio­
logical pH range5 and more susceptible to attack by nucleo-
philes in nonaqueous solution relative to (±)-2,6 only (+)-2 is 
tumorigenic in newborn mice. Both 1 and 2 alkylate the 
phosphate backbone of nucleic acid and effect the strand 
scission of DNA.7 Because alkylation at phosphate may play 
an important role in the mutagenic and carcinogenic activities 
of 1 and 2, the mechanisms of reaction of 1 and 2 with hydro­
gen phosphate species (and other general acids) in aqueous 
dioxane solutions were determined and are reported in this 
study.8 

The rates of reaction of 1 and 2 in 10% dioxane-water so­
lutions at a given pH exhibit a marked first-order dependence 
on concentration of phosphate buffer (Figure 2) .9-' ° The rate 
data for series of serially diluted buffer solutions of constant 
pH were fit to 

&obsd = & H A [ H A ] + ^H+flH+ + ^o (O 

where /CH+^H+ and A;n represent contributions by the acid 
catalyzed and spontaneous hydrolysis mechanisms, respec­
tively,-'' and HA refers to the dihydrogen phosphate ion 
(H2PO4""). Values of &H2PO4- for hydrolysis of 1 and 2, ob­
tained from plots of /c0bsd vs. [H2PO4-] for solutions at a given 
pH, were found to be constant within experimental error over 

Figure 2. Plots of Aobsd vs. [H2PO4
-] for the hydrolysis of 1 and 2 in 10% 

dioxane-water solutions at 25 0C, ionic strength 0.2 (NaClO4), pH 
7.02. 

Table I. Values of A: HA for the General Acid Catalyzed Hydrolysis 
of 1 and 2 in 10% Dioxane-Water" at 25 0C* 

HA 
* H A ( 0 . * H A ( 2 ) , 

pH M-' s-' M-1 s-' 

HOAc 

H2PO4-

Tris-H + 

HO(CH2)ZNH3
+ 

phenol 

4.81 
5.11 
6.34 
6.70 
7.02 
7.10 
7.60 
7.94 
8.54 
8.68 
8.94 
9.22 
9.58 

0.72 ± 0.06 
0.71 ±0.04 
0.31 ±0.01 
0.28 ±0.03 
0.27 ±0.01 
0.28 ±0.01 
0.25 ±0.01 

0.055 ± 0.006 
0.056 ± 0.005 
0.048 ± 0.004 
0.048 ± 0.002 
0.19 ±0.02 
0.17 ±0.01 

1.32 ±0.02 
1.33 ±0.03 
0.48 ± 0.03 
0.49 ±0.01 
0.48 ± 0.02 
0.54 ± 0.02 
0.49 ± 0.02 

0.026 ±0.001 
0.020 ± 0.002 

0.0043 ± 0.0003 
0.0044 ± 0.0004 

0.046 ± 0.003 
0.046 ± 0.002 

" Volume/volume; ionic strength, 0.2 (NaClO4). * Rates were 
monitored by observing the absorbance change of the reaction solu­
tions at 348 nm in the thermostated cell compartment (25.0 ± 0.1 0C) 
of a Gilford 2400 spectrophotometer. Rate constants were determined 
from least-squares plots of /c0bSd vs. [HA] for solutions of constant pH 
but varied buffer concentrations. 

the pH range studied (6.3-7.6, Table I). These data indicate 
that H2PO4 - is the only catalytic or reactive phosphate species 
in the hydrolysis of 1 and 2 under these conditions. 

Several kinetically indistinguishable mechanisms might 
account for the HaPCU- term in eq 1. One possibility is the 
specific acid-general base mechanism outlined in Scheme I 
(arbitrarily shown for the reaction of 1). This mechanism in­
volves attack of hydrogen phosphate ion (HPO4""2) on the 
protonated epoxide 3 to yield phosphate ester 4. 
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